Gas Processing & LNG is Produced by Gulf Publishing Holdings LLC



Natural gas venting and flaring increased in North Dakota and Texas in 2018

The volume of U.S. natural gas that was reported as vented and flared reached its highest average annual level of 1.28 billion cubic feet per day (Bcf/d) in 2018, according to the U.S. Energy Information Administration’s (EIA) Natural Gas Annual, which contains updated data about vented and flared natural gas. In 2018, the percentage of U.S. natural gas that was vented and flared increased to 1.25% of gross withdrawals, up from 0.84% the previous year. Two states, North Dakota and Texas, accounted for 1.1 Bcf/d, or 82% of the reported U.S. vented and flared natural gas.

Natural gas flaring is the process of combusting natural gas at the wellhead using a dedicated flare. Venting refers to the direct release of gas into the atmosphere and is often banned or restricted in certain states. When possible, flaring is preferred because methane, the main component of natural gas, is a potent greenhouse gas, more potent than the carbon dioxide that is the main product of flaring. Although flaring is more common than venting, both of these activities routinely occur during oil and natural gas development.

As crude oil production has outpaced the buildout of infrastructure to handle natural gas, associated gas—or natural gas that is extracted during oil production—has been increasingly vented and flared in order to manage this undeliverable natural gas production from flowing oil wells. State agencies are largely responsible for regulating natural gas venting and flaring by imposing restrictions and natural gas capture requirements.

In 2018, Texas and North Dakota accounted for 51% and 31%, respectively, of the total U.S. vented and flared natural gas. Both Texas and North Dakota are working with producers to limit the need for flaring without shutting down or affecting production of crude oil from new wells. Venting is banned in North Dakota and restricted in Texas.

North Dakota natural gas withdrawals and vented and flared gas

Source: U.S. Energy Information Administration, Natural Gas Annual

The Bakken play in North Dakota is one of the most prolific crude oil producing areas in the United States, where production grew five-fold between 2010 and 2018 to reach about 1.5 million barrels per day. During this time, natural gas processing plant capacity has not kept pace with the amount of associated gas being produced from oil wells. In 2018, North Dakota flared 0.40 Bcf/d, which is 17% of total natural gas gross withdrawals in North Dakota and the highest percentage share of any state.

In 2014, the North Dakota Industrial Commission (NDIC) established Order No. 24665 to reduce the amount of flared natural gas, but the current targets have not been consistently met. Expected completions of natural gas processing plant projects would increase the amount of natural gas that operators could capture, as would additional capacity on interstate pipelines to move the processed natural gas to market and reduce the amount of natural gas that is flared.

In Texas, the Permian Basin and Eagle Ford plays have contributed to a rapid increase in the natural gas flaring in recent years. In 2018, vented and flared natural gas in Texas reached over 0.65 Bcf/d, nearly double the 2017 level and about 2.5% of total 2018 natural gas gross withdrawals in the state.

Texas natural gas withdrawals and vented and flared gas

Source: U.S. Energy Information Administration, Natural Gas Annual

The majority of flaring permits received by the Texas Railroad Commission (RRC) are for flaring casing-head gas from oil wells. Wells are permitted to flare for up to 10 days after completion to test for a well’s resource potential, but extensions may be granted while operators await connecting wells to natural gas gathering lines. The number of venting and flaring permits approved by RRC increased from slightly more than 300 in fiscal year (FY) 2010 to nearly 5,500 in FY 2018. A number of new natural gas pipelines are planned or under construction to transport greater volumes of natural gas to market, particularly from the Permian Basin.

Principal contributors: Emily Geary, Steve Hanson


Copyright © 2019. All market data is provided by Barchart Solutions. Futures: at least a 10 minute delay. Information is provided 'as is' and solely for informational purposes, not for trading purposes or advice. To see all exchange delays and terms of use, please see disclaimer.

                                  CMEGroup                                     Icelogo

FEATURED COLUMNS

Editorial Comment
-Adrienne Blume
The editors of <i>Hydrocarbon Processing</i>, sister publication to Gas Processing & LNG, will release their “HPI Market Data 2022” annual forecast report in October.
Industry Focus: Sensor advances allow pipeline leak detection to take to the skies
-Doug Baer
Sustainability and green initiatives have always been laudable objectives, with mission statements around the world confirming commitments to lower emissions and energy consumption, and increase recyclability, to name a few.
Maintenance and Reliability: Prevent unplanned shutdowns for LNG liquefaction facilities
-Peter Zhang
Although an unplanned shutdown is an integrated part of the operational and safety management system of an operating plant, unplanned shutdowns for a modern LNG liquefaction operating facility often become some of the costliest events for the facility owner.
Regional Focus: Balancing Africa’s world-class LNG projects and the environment
-Shem Oirere
The construction of world-scale natural gas processing plants by three of Africa’s top natural gas producers has attracted scrutiny, despite efforts to commercialize the continent’s hydrocarbon resources and expand energy supply on the continent.


Throughput optimization for pipelines and gas plants

Register Now

Many processes within oil and gas pipelines and processing plants depend on maintaining specific temperatures and pressures at which the process fluids are liquids or gases. In addition, anytime water is a component in the process fluid hydrates can form and plug piping and vessels. Learn how Sensia’s Throughput optimization solution allows operators, and control systems to “see inside” the process in real time to understand where the facility is operating with respect to critical physical constants, including the phase envelope and hydrate temperature. This insight allows for more stable operation, reduced energy expenditure and associated emissions, and greater facility throughput. Case studies will include controlling methanol injection, managing heaters, virtual sensors for sulfur recovery units and more.

April 1, 2021 10:00 AM CDT

Register Now

 

Please read our Term and Conditions, Cookies Policy, and Privacy Policy before using the site. All material subject to strictly enforced copyright laws.
© 2021 Gulf Publishing Holdings LLC.