Gas Processing is Produced by Gulf Publishing Company

Your source for technology information for the gas processing industry


GPA '18: Adsorption-based separation technology for gas treating

AUSTIN—On Day 1 of GPA Midstream's 2018 Annual Meeting, Chien-Chiang Chen of ExxonMobil Upstream Research Co. talked about the concept of process intensification using an adsorption-based separation technology. Adsorption-based separation processes are widely used in the gas treating industry for dehydration, CO2 removal and helium recovery.

The conventional approach requires multiple-hour cycles. "The consequences of this approach are that the overall system can become very large, very quickly," Chen said. However, by applying process intensification using rapid cycles of less than 5 min, equipment size, weight and footprint can be reduced, and a higher level of modularization can be achieved.

Technology description. The technology is similar to conventional adsorption in that it is a continuous process flow achieved by contacting multiple beds sequentially. Beds are regenerated using pressure and/or temperature swing. It differs from conventional adsorption in that high gas velocities are used for a high mass transfer rate. It uses structured adsorbent beds versus packed beds for low pressure drop and high mass transfer area. ExxonMobil's current focus is deep dehydration and low-level CO2 removal for cryogenic applications.

The reduced cycle time is enabled by two key mechanical systems: fast-acting (rapid-cycle) valves and structured adsorbent beds. The rapid-cycle valves must be actuated and operated over a short duration of time and be able to withstand millions of cycles.

ExxonMobil has entered a joint development agreement with Johnson Matthey to design and fabricate the structured adsorbent beds, which comprise a selection of coated parallel channels oriented lengthwise. The linear flow path minimizes pressure drop. The mechanical structure allows for rapid cycling with counter-current flow, and multiple modules are stacked vertically.

Technology application. Several experiments were performed at a variety of scales to understand the desorption rates with short contact times. Slower velocities indicated longer water breakthrough profiles. To test the technology at a larger scale, ExxonMobil is building a multi-bed field unit in Fort Worth, Texas. Startup is tentatively scheduled for late 2018, and the unit is planned to run for 1–2 yr. ExxonMobil also plans to test startup, shutdown, and a wide range of upset scenarios at the field unit.

In summary, Chen said, the process intensification technology offers significant benefits by adapting rapid pressure and/or temperature swing cycles. Key enabling mechanisms for the technology have been developed, including rapid-cycle valves and structured adsorbent beds. Pilot studies have confirmed the technical feasibility for deep dehydration.


Copyright © 2018. All market data is provided by Barchart Solutions. Futures: at least a 10 minute delay. Information is provided 'as is' and solely for informational purposes, not for trading purposes or advice. To see all exchange delays and terms of use, please see disclaimer.

                                  CMEGroup                                     Icelogo

FEATURED COLUMNS

Business Trends
-
In the business of hydrocarbon production, accurate accounting of produced fluids and gases is critical from a process control, management and fiscal perspective.
Editorial Comment
-Adrienne Blume
The US East Coast will send out its first LNG exports in early 2018 as Dominion Energy’s Cove Point LNG export facility in Lusby, Maryland becomes operational.


The New LNG Imperative

Register Now

The shale gas boom established the US as the world’s leading natural gas producer and is responsible for billions of dollars of investments in the US gas processing industry. Since 2012, the US has witnessed unprecedented growth in new gas processing capacity and infrastructure. This rise is due to greater production of domestic shale gas, which is providing cheap, available feedstock to fuel the domestic gas processing, LNG and petrochemical industries. New gas processing projects include the construction of billions of cubic feet per day of new cryogenic and gas processing capacity, NGL fractionators, multi-billion-dollar pipeline infrastructure projects, and the development of millions of tons per year of new LNG export terminal construction. Attend this webcast to hear from Lee Nichols, Editor/Associate Publisher, Hydrocarbon Processing, Scott Allgood, Director-Data Services, Energy Web Atlas and Peregrine Bush, Senior Cartographic Editor, Petroleum Economist as they discuss the future of LNG and the application of Energy Web Atlas, a web-based GIS platform which allows users to track real-time information for every LNG project.

November 29, 2017 10am CST

View on Demand

 

Please read our Term and Conditions, Cookies Policy, and Privacy Policy before using the site. All material subject to strictly enforced copyright laws.
© 2018 Gulf Publishing Company.